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Spatial and temporal spectra of noise driven stripe patterns

K. Staliunad
Physikalisch Technische Bundesanstalt, 38116 Braunschweig, Germany
(Received 18 December 2000; published 27 November 2001

Spatial and temporal noise power spectra of stripe patterns are investigated, using as a model a Swift-
Hohenberg equation with a stochastic term. In particular, the analytical and numerical investigation€lshow:
the temporal noise spectra are of Lform, wherea=1+(3—D)/4 with D the spatial dimension of the
system;(2) that the stochastic fluctuations of the stripe position are subdiffusive.
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Stripe (or roll) patterns appear in a variety of spatially sion of the system. Also the stochastic drift of the stripe
extended systems in nature, such as ripples in sand, or margatterns is found to be subdiffusive: whereas usual diffusive
ings of the skins of the animals, and also in variety of phys-drift (e.g., of Brownian particleobeys a square root law
ics laboratory systems, such as Rayleigh-Benard convection(x(t)%)«t*?, the stochastic drift of stripe patterns has a
[1], Taylor-Couette flow$2], or wide aperture nonlinear op- root mean wandering t# in the case of one spatial dimen-
tical resonatorg¢degenerate optical parametric oscillat@f  sion.
four wave mixing[4]). Several microscopic mechanisms for  The very presence of the sharp peaks of noise spectra are
(roll) pattern formation are already understood, such as thi general related to large amount of phase space for fluctua-
Turing mechanism in chemical or biological systefis and  tions near a finite wavelength instability—the phenomenon
the “off-resonance excitation” in nonlinear optical systems sometimes(mostly in liquid-crystal studigsreferenced as
[6]. For the large variety of pattern forming systems, despitéBrazovskii phenomenori13]. The main purpose of the
their different microscopic pattern formation mechanisms, gresent paper is, however, to investigate the concrete imple-
universal description of stripe patterns is possible. Universamentations of the “singular bunching of the phase space:”
features of stripe pattern dynami¢s.g., the “zigzag” or  calculation of the singularities of the temporal and spatial
Eckhaus instabilitiesare well known, as investigated on uni- spectra of stripe patterns, and as consequence, calculation of
versal model equations: the Swift-Hohenberg equatiorthe stochastic drift of the patterns.

(SHE) as an order parameter equation for stripes in spatially The numerical analysis in the present paper is performed
isotropic systen7], or the Newell-Whitehead-Segel equa- by solving a stochastic Swift-Hohenberg equati@h

tion as an amplitude equation for perturbations of stripe pat-

terns|8]. A pA— A= (A+V22ALT 1

The above referenced investigations deal with dynamics ot P ( ) (r.0), @
of stripes in the absence of noise. It is, however, well known
that noise, as present in every system, can bring about nef@r the temporal evolution of the real-valued order parameter
features in the behavior of stripe pattefasd of patterns in  A(r,t), defined in D-dimensional spage p is the control
general. First, noise can modifyshift) the very threshold of ~parameterthe stripe formation instability occurs pt=0), A
stripe formation9]. Second, noise can lead to precursors ofis the detuning parameter, determining the resonant wave
stripes below the pattern formation threshgltD]. While ~ number of the stripe patterky:k3=A, and I'(r,t) is an
noiseless pattern forming system below the pattern formatioadditive noise, 5-correlated in space and time, and of
threshold show no patterns at all, since all perturbations destrengthg:(I"(r{,t{)['(r,,t5))=q8(r{—r5) (t;—ty).
cay, one observes in the presence of noise a particularly spa- The analytical results are obtained by solving stochastic
tially filtered noise, which, e.g., in nonlinear optics has beeramplitude equation for stripes
named “quantum patterns,” when the noise is of quantum
origin [11]. Finally, above the pattern formation threshold
noise can result in defectalislocations, disclinationsof
stripe pattern$l2].

The present paper deals with the spatiotemporal noisor a slowly varying complex-valued envelogr,t) of the
spectra of stripe patterns above the pattern formation threslstripe pattern with the resonant wave vedtgr The ampli-
old. It is shown, by numerical and analytical calculations,tude equatior(2) can be obtained from Ed1), by inserting
that the spatial noise spectra contain sharp pésikgulari-  A(r,t) =[B(r,t)exp(kqr) + c.c]V3, or directly from the mi-
ties) centered at the wave vectors of the stripe planform. Theroscopic equations of various stripe forming systgsee
temporal power spectra of stripes driven by noise are obe.g., Ref[14]). Equation(2) can be also written phenomeno-
tained in a 1f* form, with « dependent on the spatial dimen- logically from symmetry considerations for stripe patterns in

9B _
E=pB—|B|ZB—(2|k0V+V2)ZB+F(r,t), )

general[8].
For analytical treatment it is assumed, that the system is
*FAX: +49-531-5924423. sufficiently far above the pattern forming transitiqme>q.
Email address: Kestutis.Staliunas@PTB.DE Then the homogeneous componéB|=/p is dominating
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in Eq. (2) (correspondingly one stripe component in E).

is dominating, and one can look for a solution of E) in

the form of a perturbed homogeneous steBér,t)=B,
+b(r,t). After linearization of Eq.2) aroundB,, and di-
agonalization, one obtains linear stochastic equations for the
amplitude: b, =(b+b*)/v2 and phaseb_=(b—b*)/v2
perturbations

(?b_'. ~
gt L (V)b + T (1), (39 FIG. 1. Spatial noise power spectrum of stripes in 2D obtained
numerically by solving stochastic SH#) with p=1 andA=0.7.
_ A Averaging timet, eraging= 5000. Intensity of spatial spectral compo-
e L. (V)b_+T_(r,1), (3D nents in logarithmic representation.
where the space-differential operatdrs (ko,V) are given °° q qm
b S(Ak)= 2 sdw= .
y —ww®+|L_(kg,AK)]| 2|L_(kq,Ak)]
N > wa— (6)
L= (ko,V)=—p+(2KoV)?~ V45 7~ (4koV?)?,
(4a)

This results in a divergence of the spatial spectra at
and their spatial spectia. (kq,Ak) by —0 [equivalently in a divergence of the spatial spectra of
roll patterns in Eq(1) for: k—kg]. As follows from Eq.(6),
L. (kg,AK)=—p—(2koAk)?— Ak*F \p?+ (4koAKk®)?, the perturbations of the stripe pattekik diverge differently,
(4b) depending on whether the perturbations are parallel or per-
_ o ) _ pendicular to the wave vector of the stripe pattkgn This
as obtained by substitutiol —iAk, whereAk=k—kg is  follows from the anisotropic form of the differential operator
the wave vector of the perturbation mode in E2). (4). The parallel perturbationé&corresponding to compres-
Asymptotically, for|4kA0V3|<p the differential operator  sjon and undulation of stripgsliverge astk 2, the perpen-
for phase perturbations _(V) simplifies to: L_(kq,V) dicular perturbationgcorresponding to zigzagging of stripes
=(2koV)?—V*%. In the opposite limit, of|4k,V3>p the diverge asAk~“. This results in an anisotropic form of the
operator is:I:_(ko,V)= —(2ikoV+V?)2. singularity atAk=0, which can actually be expected from
Equation(3a) is an equation for amplitude fluctuations  the anisotropic form of the amplitude equation for rdf.
corresponding to the amplitude modulation of the stripe patFigure 1 shows the spatial noise power spectrum of stripe
tern. Equatior(3b) is the equation for phase fluctuations ~ Pattern as obtained from numerical integration of SHE
corresponding to the parallel translation of the stripes. Equaand illustrates the anisotropy. The anisotropy results in the
tion (3b) indicates that the phase fluctuations decay with gtability conditions of stripes depending on the number of
rate L_(Ko,Ak)=—(2koAk)2—Ak* in the strong pump Spatial dimensions. Indeed, the integral of &). over the
limit, or L_(ko,Ak)= — (2koAk+Ak?)? in the weak pump SPatial wave numberdk diverges for spatial dimensions
limit. This means that the long-wavelength phase perturbaD <4, and converges fob=4 only. Only for four (and
tion modes decay asymptotically slowly, with a decay ratemore dimensions of space the stripes are absolutely stable
approaching zero foAk— 0, which is a consequence of the against additive noise. This is in contrast to a well-known
phase invariance of the system. theorem concerning the stability of a “condensate”: the con-
Next 0n|y the phase perturbations are considered. Thegensatda homogeneous d|5tr|but|b“; stable for dimension
determine the stochastic dynamics of the stripe pattern abov@ space larger than two. _ _
the stripe formation thresholg>q. More precisely, the am- ~ The temporal power spectra are obtained by the integral
plitude fluctuations are small compared with phase fluctua®f Eg. (5) over all possible wave vectorsk,
tions if [4koAk®|<p, as follows from Eq(3).
We calculate spatiotemporal power spectra of phase fluc- o q
tuations, by rewriting Eq(3b) in terms of the spatial and S(w) f w2 +|L_ (Ko, AK)
temporal Fourier componentd(r,t)= [b_(k,w)exp{wt o e

dAK, @)

—ikr)dwdk,
which, however, has no analytical form, even for one spatial
) IT_(k,w)|? dimension.
S(k,0)=[b_(k,w)| T w2+ |L_ (Ko, AK) [ ) Asymptotically, in the limit of small frequenciesy— 0,

when the term (R,Ak)? dominates in the denominator of
Assumingé-correlated noise in space and timE,_(k,w)|?  integral (7), the analytical integration is possible, and leads
is simply proportional to the strengthof the random force. to the following results. For one dimensig¢hD) the spec-
The spatial power spectrum is obtained by integration otrum is: S;p(w)=c;pq/w*? with the coefficient c,p
Eq. (5) over all spatial frequencies, =7r/(2\/2k5). For 2D: S,p(w)=cC,pa/w?® for 3D:
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log 4 (S(w)) (1) One-dimensional stripes have the same exponent of
5 noise power spectra as one-dimensional condensates. This is
10 r plausible, since the amplitude equation for stripes is similar

to a complex Ginzburg-Landau equation, and the two coin-
cide in the limit of Ak— 0.

(2) Two-dimensional stripes behave like noisy conden-
sates of dimension dD= 1.5, if one judges from the expo-
nents of the noise spectra in the low frequency limit. As
discussed abovésee also Fig. JLlthe singularity of spatial
noise spectra is strongly squeezed in the direction along the
stripes. It is then plausible, that the noise characteristics of
this anisotropic system are obtained in between those for a
log,,(S(®)) one- and isotropic two-dimensional system.

b (3) Similarly three-dimensional stripdiamellag behave
like two-dimensional condensates. Both display power spec-
tra with «=1. In other words—phase space for three-
dimensional stripes has only two dimensions.

Amplitude
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-6 -4 -2 0 2 4 6\ ]ogm(@)

10 k
sF

The integral of the X* power spectrum always diverges
in the limit of large or of small frequency, indicating a
breakup of the ordered state in the limit of small or of large
- times, respectively. For the stripes in up to three spatial di-
€ 4 2 0 2 4\ log, (@) mensionsa=1 the integral of the temporal power spectra
diverges at low frequencies, which means that the average
FIG. 2. Temporal spectra as obtained by numerical calculatior$ize of the fluctuations of the order parameter grows to in-
of the integral(7) with p=1, andk?=A=1: () 1D case. The finity for large times. The average size of fluctuations is:
phase power spectrufas following from integration of Eq3b)],  (|b(t)[%)~J7,  S(w)dw, wherewyy~2mlt is the lower cut-
the amplitude power spectrufas following from integration of Eq.  off boundary of the temporal spectra. Thus the variance of
(38], and the total spectrum is showi) The phase power spectra the order parameter for processes witfi“lhoise spectra
as calculated for 1, 2, and 3 spatial dimensions. grows as(|b(t)|2>octa71 with increasing time. This general-
izes the well known Wiener stochastic diffusion process
Ssp(w) =c3p0/w, and in the general case of D dimensions:obeying a linear diffusion law for the variancer equiva-
Sp(w) =cpd/w® with @=1+(3—D)/4 and coefficiente,  lently a square root lawm/(x(t)?)t*? for the root mean
of order of unity. wandering. The Wiener law is well known for zero-
The integral(7) was integrated numerically, and the re- dimensional systems, e.g., Brownian motion. From our re-
sults for 1,2,3 dimensions are given in Fig. 2ot/depen-  sults it follows that diffusion processes in spatially extended
dences are obtained. In the small frequency limit:0, the  systems are weaker than in zero dimensional systems. In
exponents obeyr=1+(3—D)/4; in the large frequency particular the variance of the order parameter in 1D systems
limit w— < the spectra show also a power law form, how- (a=1.5) increase agb(t)|?)=t2 We tested this stochastic
ever, with exponentsa=1+(4—D)/4. The exponents drift of stripe pattern by numerically solving the Swift-
change abruptly from small frequency values=1+ (3 Hohenberg equatiofil) in 1D. We calculated the displace-
—D)/4 to large frequency valuea=1+(4—D)/4 at the ment of the stripe pattern as a function of tinf&he dis-
critical frequencywc,%4k§, as follows from the analysis of placementx(t) of the stripe position in SHEL) is directly
Eq. (4), and as seen from Fig. 2. proportional to the phase of the order paramBiieg,t) at the
In this way 1f spectra are obtained for fluctuations of corresponding spatial location in amplitude equati@]
stripes subjected to additive white noise. We note, that thé&igure 3a) shows the power spectrum of displacement,
1/f-, or “flicker” noise is an old puzzle of physics: It is which follows aw %2 law, in accordance with the analytical
found in many different kinds of systems, from physics, predictions. Figure ®) shows the power spectrum of the
technology, biology, astrophysics, geophysics, and sociologyariation[temporal derivativel x(t)/dt] of the displacement,
[15]. Recently such ¥/ noise was obtained for “conden- which follows aw? law, respectively. The average square
sates,” described by a stochastic Ginzburg-Landau equatiodisplacement of stripe positiox(t), as averaged over many
[16], where the exponent is shown to depend on the di- realizations is shown in Fig.(8). The predicted slope of 1/2
mension of space ag=1+(2—D)/2. Although the most is clearly seen for times up to=1000. For very large times
common origin of the flicker noise in the nature seems to behe usualBrownian stochastic drift is obtained. This behav-
already related with self-organized criticalift7], the ap- ior for large timegcorrespondingly small frequencjefow-
pearance of T/spectra in condensates on homogeneous platver, is an artifact of numerical space discretization. A sub-
form [16] or on stripe platform(the present papgiis still  diffusive stochastic drift of kinkgfronts) in 1D Ginzburg-
remarkable. Landau equatior(for small times, howeverwas recently
Comparing with the results $1.6] one can conclude, that: found in Ref.[18].

o=1.75
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S( FIG. 4. Lifetime of off-resonant stripe pattern, depending on the
i strength of stochastic forag as obtained by numerical integration

of SHE (1) in 1D with p=1. The resonant stripe pattern wikj

=1 was excited fok=1. The detuning value was then reduced to
0.75, and the time was measured until the new resonant stripe pat-
tern wins. Every point is obtained by averaging over 10 realizations.
The dashed line with slopg™2 serves to guide the eye.
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T DSl § A T BN TP on average of the order of magnitude of the order parameter
0.0005 .01 0005 0.01 005 0.1 05 ® itself. The long range order eventually breaks up even for
weak stochastic force. In general, forfd/power spectra
with @>1 such finite perturbations occur for timést,,
«q @1, We tested this dependence on 1D stripes, where
the critical time ist.,cq~ 2. For this purpose we prepared
numerically an off-resonance stripe pattern in SHE for
1D without stochastic term. The off-resonance stripe was
stable (was within the Eckhaus stability rangeThen we
switched on the stochastic term and waited until the fluctua-
tions of the stripe pattern grew and destroyed the stripe pat-
tern locally. After the stripe pattern is destroyed at some
places, a resonant stripe pattern appears there and invades the
R STV —rv— _— whole pattern in the form of propagating switching waves.
The state of the system in this way changes from a local
FIG. 3. Statistical properties of position of stripe pattern as ob-potential minimum(off-resonance stripeo the global poten-
tained by numerical integration of SHE) in 1D with p=1 and tial minimum (resonant stripeas triggered by a local pertur-
A=0.7. (a) the power spectrum of the displacemerit). The bation.
dashed line with slope ~** serves to guide the eyé) the power In Fig. 4 the numerically calculated lifetimes of the off-
spectrum of variation of the displacememx(t)/dt. Dashed line  resonance stripe pattern are plotted, depending on the tem-
with slope ' serves to guide the eydc) the average square perature of the stochastic force. Again, as predicted by ana-
d_isplacement of stripe positior(t) as averaged over 1000 realiza- lytic calculations the dependend:gocq*Z is obtained. This
tions. shows that in spatially extended systems the switching time
from the local potential minimum to the deeper global mini-
The above discussion on stochastic drifts concerns larggum does not depends exponentially on time as in zero-
times: the variance of the position of 1D strié€ is related dimensional(compact systems, but obeys a power law. In
with the o~ *° power spectrum at small frequencies. Theparticular, for stripe patterns the switching time tgcn
w17 spectrum at large frequencies £ w.~4k3) predicts  «q~2 in 1D, andtgq 4 in 2D.
equally at®* law for the stochastic drift at small times. Our ~ Simple models for stripe patternéstochastic Swift-
numerical calculations in Fig. 3 do not consider, howeverHohenberg equation for order parameter, and stochastic
the small time scalest€27/w.,), thus the small time drift Newell-Whitehead-Segel equation for the envelope of

001
0.005 F

law was not numerically observed. stripeg allow to calculate spatiotemporal noise power spec-
Our analysis in 2D predicts the stochastic drift obeying atra, and to predict the following properties of the stripe pat-
t* law for large times, and &2 for small times. terns in presence of noise:
The stochastic drif{although subdiffusiveof the order (1) Anisotropic form of singularities in the spatial power

parameter means that for large times the fluctuations beconspectra;
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(2) stability conditions dependent on number of spatialstripe patterns on the strength of stochastic fofcerre-

dimensions; sponding to local potential minimum
(3) 1/f* temporal power spectra with the exponentle-

pending explicitly on the number of spatial dimensions; Discussions with C. O. Weiss are acknowledged. This
(4) sub-Brownian stochastic drift law; work has been supported by Sonderforschungs Bereich 407,

(5) power law dependence of life-time of locally stable and by ESF Network PHASE.
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