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Spatial and temporal spectra of noise driven stripe patterns

K. Staliunas*
Physikalisch Technische Bundesanstalt, 38116 Braunschweig, Germany

~Received 18 December 2000; published 27 November 2001!

Spatial and temporal noise power spectra of stripe patterns are investigated, using as a model a Swift-
Hohenberg equation with a stochastic term. In particular, the analytical and numerical investigations show:~1!
the temporal noise spectra are of 1/f a form, wherea511(32D)/4 with D the spatial dimension of the
system;~2! that the stochastic fluctuations of the stripe position are subdiffusive.
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ly
a

ys
ti
-

or
th

s
it
,

rs

i-
io
al
a-
a

ic
w
ne

o

tio
d
sp
e

um
ld

ois
es
s

h
ob
n-

pe
ive

a
-

are
tua-
on

ple-
e:’’
tial
n of

ed

ter

ave

of

stic

-
in

is
Stripe ~or roll! patterns appear in a variety of spatial
extended systems in nature, such as ripples in sand, or m
ings of the skins of the animals, and also in variety of ph
ics laboratory systems, such as Rayleigh-Benard convec
@1#, Taylor-Couette flows@2#, or wide aperture nonlinear op
tical resonators~degenerate optical parametric oscillators@3#,
four wave mixing@4#!. Several microscopic mechanisms f
~roll! pattern formation are already understood, such as
Turing mechanism in chemical or biological systems@5#, and
the ‘‘off-resonance excitation’’ in nonlinear optical system
@6#. For the large variety of pattern forming systems, desp
their different microscopic pattern formation mechanisms
universal description of stripe patterns is possible. Unive
features of stripe pattern dynamics~e.g., the ‘‘zigzag’’ or
Eckhaus instabilities! are well known, as investigated on un
versal model equations: the Swift-Hohenberg equat
~SHE! as an order parameter equation for stripes in spati
isotropic system@7#, or the Newell-Whitehead-Segel equ
tion as an amplitude equation for perturbations of stripe p
terns@8#.

The above referenced investigations deal with dynam
of stripes in the absence of noise. It is, however, well kno
that noise, as present in every system, can bring about
features in the behavior of stripe patterns~and of patterns in
general!. First, noise can modify~shift! the very threshold of
stripe formation@9#. Second, noise can lead to precursors
stripes below the pattern formation threshold@10#. While
noiseless pattern forming system below the pattern forma
threshold show no patterns at all, since all perturbations
cay, one observes in the presence of noise a particularly
tially filtered noise, which, e.g., in nonlinear optics has be
named ‘‘quantum patterns,’’ when the noise is of quant
origin @11#. Finally, above the pattern formation thresho
noise can result in defects~dislocations, disclinations! of
stripe patterns@12#.

The present paper deals with the spatiotemporal n
spectra of stripe patterns above the pattern formation thr
old. It is shown, by numerical and analytical calculation
that the spatial noise spectra contain sharp peaks~singulari-
ties! centered at the wave vectors of the stripe planform. T
temporal power spectra of stripes driven by noise are
tained in a 1/f a form, with a dependent on the spatial dime
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sion of the system. Also the stochastic drift of the stri
patterns is found to be subdiffusive: whereas usual diffus
drift ~e.g., of Brownian particle! obeys a square root law
A^x(t)2&}t1/2, the stochastic drift of stripe patterns has
root mean wandering}t1/4 in the case of one spatial dimen
sion.

The very presence of the sharp peaks of noise spectra
in general related to large amount of phase space for fluc
tions near a finite wavelength instability—the phenomen
sometimes~mostly in liquid-crystal studies! referenced as
Brazovskii phenomenon@13#. The main purpose of the
present paper is, however, to investigate the concrete im
mentations of the ‘‘singular bunching of the phase spac
calculation of the singularities of the temporal and spa
spectra of stripe patterns, and as consequence, calculatio
the stochastic drift of the patterns.

The numerical analysis in the present paper is perform
by solving a stochastic Swift-Hohenberg equation@7#

]A

]t
5pA2A32~D1¹2!2A1G~r ,t !, ~1!

for the temporal evolution of the real-valued order parame
A(r ,t), defined in D-dimensional spacer . p is the control
parameter~the stripe formation instability occurs atp50!, D
is the detuning parameter, determining the resonant w
number of the stripe patternk0 :k0

25D, and G(r ,t) is an
additive noise, d-correlated in space and time, and
strengthq:^G(r1 ,t1)G(r2 ,t2)&5qd(r12r2)d(t12t2).

The analytical results are obtained by solving stocha
amplitude equation for stripes

]B

]t
5pB2uBu2B2~2ik0¹1¹2!2B1G~r ,t !, ~2!

for a slowly varying complex-valued envelopeB(r ,t) of the
stripe pattern with the resonant wave vectork0 . The ampli-
tude equation~2! can be obtained from Eq.~1!, by inserting
A(r ,t)5@B(r ,t)exp(ik0r )1c.c.#/), or directly from the mi-
croscopic equations of various stripe forming systems~see
e.g., Ref.@14#!. Equation~2! can be also written phenomeno
logically from symmetry considerations for stripe patterns
general@8#.

For analytical treatment it is assumed, that the system
sufficiently far above the pattern forming transition:p@q.
Then the homogeneous componentuB0u5Ap is dominating
©2001 The American Physical Society29-1
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K. STALIUNAS PHYSICAL REVIEW E 64 066129
in Eq. ~2! ~correspondingly one stripe component in Eq.~1!
is dominating!, and one can look for a solution of Eq.~2! in
the form of a perturbed homogeneous state:B(r ,t)5B0
1b(r ,t). After linearization of Eq.~2! aroundB0 , and di-
agonalization, one obtains linear stochastic equations for
amplitude: b15(b1b* )/& and phase:b25(b2b* )/&
perturbations

]b1

]t
5L̂1~¹!b11G1~r ,t !, ~3a!

]b2

]t
5L̂2~¹!b21G2~r ,t !, ~3b!

where the space-differential operatorsL̂6(k0 ,¹) are given
by

L̂6~k0 ,¹!52p1~2k0¹!22¹47Ap22~4k0¹3!2,
~4a!

and their spatial spectraL6(k0 ,Dk) by

L6~k0 ,Dk!52p2~2k0Dk!22Dk47Ap21~4k0Dk3!2,
~4b!

as obtained by substitution¹↔ iDk, whereDk5k2k0 is
the wave vector of the perturbation mode in Eq.~2!.

Asymptotically, for u4k0¹3u!p the differential operator
for phase perturbationsL̂2(¹) simplifies to: L̂2(k0 ,¹)
5(2k0¹)22¹4. In the opposite limit, ofu4k0¹3u@p the
operator is:L̂2(k0 ,¹)52(2ik0¹1¹2)2.

Equation~3a! is an equation for amplitude fluctuationsb1

corresponding to the amplitude modulation of the stripe p
tern. Equation~3b! is the equation for phase fluctuationsb2

corresponding to the parallel translation of the stripes. Eq
tion ~3b! indicates that the phase fluctuations decay wit
rate L2(k0 ,Dk)52(2k0Dk)22Dk4 in the strong pump
limit, or L2(k0 ,Dk)52(2k0Dk1Dk2)2 in the weak pump
limit. This means that the long-wavelength phase pertur
tion modes decay asymptotically slowly, with a decay r
approaching zero forDk→0, which is a consequence of th
phase invariance of the system.

Next only the phase perturbations are considered. T
determine the stochastic dynamics of the stripe pattern ab
the stripe formation threshold.p.q. More precisely, the am
plitude fluctuations are small compared with phase fluct
tions if u4k0Dk3u!p, as follows from Eq.~3!.

We calculate spatiotemporal power spectra of phase fl
tuations, by rewriting Eq.~3b! in terms of the spatial and
temporal Fourier componentsb(r ,t)5*b2(k,v)exp(ivt
2ikr )dvdk,

S~k,v!5ub2~k,v!u25
uG2~k,v!u2

v21uL2~k0 ,Dk!u2
. ~5!

Assumingd-correlated noise in space and time,uG2(k,v)u2
is simply proportional to the strengthq of the random force.

The spatial power spectrum is obtained by integration
Eq. ~5! over all spatial frequenciesv,
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S~Dk!5E
2`

` q

v21uL2~k0 ,Dk!u2
dv5

qp

2uL2~k0 ,Dk!u
.

~6!

This results in a divergence of the spatial spectra atDk
→0 @equivalently in a divergence of the spatial spectra
roll patterns in Eq.~1! for: k→k0#. As follows from Eq.~6!,
the perturbations of the stripe patternDk diverge differently,
depending on whether the perturbations are parallel or
pendicular to the wave vector of the stripe patternk0 . This
follows from the anisotropic form of the differential operat
~4!. The parallel perturbations~corresponding to compres
sion and undulation of stripes! diverge asDk22, the perpen-
dicular perturbations~corresponding to zigzagging of stripe!
diverge asDk24. This results in an anisotropic form of th
singularity atDk50, which can actually be expected from
the anisotropic form of the amplitude equation for rolls~2!.
Figure 1 shows the spatial noise power spectrum of st
pattern as obtained from numerical integration of SHE~1!
and illustrates the anisotropy. The anisotropy results in
stability conditions of stripes depending on the number
spatial dimensions. Indeed, the integral of Eq.~6! over the
spatial wave numbersDk diverges for spatial dimension
D,4, and converges forD>4 only. Only for four ~and
more! dimensions of space the stripes are absolutely sta
against additive noise. This is in contrast to a well-know
theorem concerning the stability of a ‘‘condensate’’: the co
densate~a homogeneous distribution! is stable for dimension
of space larger than two.

The temporal power spectra are obtained by the inte
of Eq. ~5! over all possible wave vectorsDk,

S~v!5E
2`

` q

v21uL2~k0 ,Dk!u2 dDk, ~7!

which, however, has no analytical form, even for one spa
dimension.

Asymptotically, in the limit of small frequencies,v→0,
when the term (2k0Dk)2 dominates in the denominator o
integral ~7!, the analytical integration is possible, and lea
to the following results. For one dimension~1D! the spec-
trum is: S1D(v)5c1Dq/v3/2, with the coefficient c1D

5p/(2&k0
2). For 2D: S2D(v)5c2Dq/v1.25, for 3D:

FIG. 1. Spatial noise power spectrum of stripes in 2D obtain
numerically by solving stochastic SHE~1! with p51 andD50.7.
Averaging timetaveraging55000. Intensity of spatial spectral compo
nents in logarithmic representation.
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SPATIAL AND TEMPORAL SPECTRA OF NOISE . . . PHYSICAL REVIEW E 64 066129
S3D(v)5c3Dq/v, and in the general case of D dimension
SD(v)5cDq/va with a511(32D)/4 and coefficientscD
of order of unity.

The integral~7! was integrated numerically, and the r
sults for 1,2,3 dimensions are given in Fig. 2. 1/va depen-
dences are obtained. In the small frequency limitv→0, the
exponents obeya511(32D)/4; in the large frequency
limit v→` the spectra show also a power law form, ho
ever, with exponentsa511(42D)/4. The exponents
change abruptly from small frequency valuesa511(3
2D)/4 to large frequency valuesa511(42D)/4 at the
critical frequencyvcr'4k0

2, as follows from the analysis o
Eq. ~4!, and as seen from Fig. 2.

In this way 1/f spectra are obtained for fluctuations
stripes subjected to additive white noise. We note, that
1/f -, or ‘‘flicker’’ noise is an old puzzle of physics: It is
found in many different kinds of systems, from physic
technology, biology, astrophysics, geophysics, and sociol
@15#. Recently such 1/f noise was obtained for ‘‘conden
sates,’’ described by a stochastic Ginzburg-Landau equa
@16#, where the exponenta is shown to depend on the d
mension of space asa511(22D)/2. Although the most
common origin of the flicker noise in the nature seems to
already related with self-organized criticality@17#, the ap-
pearance of 1/f spectra in condensates on homogeneous p
form @16# or on stripe platform~the present paper! is still
remarkable.

Comparing with the results of@16# one can conclude, that

FIG. 2. Temporal spectra as obtained by numerical calcula
of the integral~7! with p51, and k0

25D51: ~a! 1D case. The
phase power spectrum@as following from integration of Eq.~3b!#,
the amplitude power spectrum@as following from integration of Eq.
~3a!#, and the total spectrum is shown.~b! The phase power spectr
as calculated for 1, 2, and 3 spatial dimensions.
06612
:

-

e

,
y

on

e

t-

~1! One-dimensional stripes have the same exponen
noise power spectra as one-dimensional condensates. T
plausible, since the amplitude equation for stripes is sim
to a complex Ginzburg-Landau equation, and the two co
cide in the limit ofDk→0.

~2! Two-dimensional stripes behave like noisy conde
sates of dimension ofD51.5, if one judges from the expo
nents of the noise spectra in the low frequency limit.
discussed above~see also Fig. 1! the singularity of spatial
noise spectra is strongly squeezed in the direction along
stripes. It is then plausible, that the noise characteristics
this anisotropic system are obtained in between those f
one- and isotropic two-dimensional system.

~3! Similarly three-dimensional stripes~lamellae! behave
like two-dimensional condensates. Both display power sp
tra with a51. In other words—phase space for thre
dimensional stripes has only two dimensions.

The integral of the 1/f a power spectrum always diverge
in the limit of large or of small frequency, indicating
breakup of the ordered state in the limit of small or of lar
times, respectively. For the stripes in up to three spatial
mensionsa>1 the integral of the temporal power spect
diverges at low frequencies, which means that the aver
size of the fluctuations of the order parameter grows to
finity for large times. The average size of fluctuations
^ub(t)u2&'*vmin

` S(v)dv, wherevmin'2p/t is the lower cut-

off boundary of the temporal spectra. Thus the variance
the order parameter for processes with 1/f a noise spectra
grows aŝ ub(t)u2&}ta21 with increasing time. This general
izes the well known Wiener stochastic diffusion proce
obeying a linear diffusion law for the variance~or equiva-
lently a square root lawA^x(t)2&}t1/2 for the root mean
wandering!. The Wiener law is well known for zero
dimensional systems, e.g., Brownian motion. From our
sults it follows that diffusion processes in spatially extend
systems are weaker than in zero dimensional systems
particular the variance of the order parameter in 1D syste
(a51.5) increase aŝub(t)u2&}t1/2. We tested this stochasti
drift of stripe pattern by numerically solving the Swif
Hohenberg equation~1! in 1D. We calculated the displace
ment of the stripe pattern as a function of time.@The dis-
placementx(t) of the stripe position in SHE~1! is directly
proportional to the phase of the order parameterB(x,t) at the
corresponding spatial location in amplitude equation~2!.#
Figure 3~a! shows the power spectrum of displaceme
which follows av23/2 law, in accordance with the analytica
predictions. Figure 3~b! shows the power spectrum of th
variation@temporal derivativedx(t)/dt# of the displacement,
which follows av1/2 law, respectively. The average squa
displacement of stripe positionx(t), as averaged over man
realizations is shown in Fig. 3~c!. The predicted slope of 1/2
is clearly seen for times up tot'1000. For very large times
the usual~Brownian! stochastic drift is obtained. This behav
ior for large times~correspondingly small frequencies!, how-
ever, is an artifact of numerical space discretization. A s
diffusive stochastic drift of kinks~fronts! in 1D Ginzburg-
Landau equation~for small times, however! was recently
found in Ref.@18#.

n
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K. STALIUNAS PHYSICAL REVIEW E 64 066129
The above discussion on stochastic drifts concerns la
times: the variance of the position of 1D stripest1/2 is related
with the v21.5 power spectrum at small frequencies. T
v21.75 spectrum at large frequencies (v>vcr'4k0

2) predicts
equally at3/4 law for the stochastic drift at small times. Ou
numerical calculations in Fig. 3 do not consider, howev
the small time scales (t<2p/vcr), thus the small time drift
law was not numerically observed.

Our analysis in 2D predicts the stochastic drift obeying
t1/4 law for large times, and at1/2 for small times.

The stochastic drift~although subdiffusive! of the order
parameter means that for large times the fluctuations bec

FIG. 3. Statistical properties of position of stripe pattern as
tained by numerical integration of SHE~1! in 1D with p51 and
D50.7. ~a! the power spectrum of the displacementx(t). The
dashed line with slopev23/2 serves to guide the eye.~b! the power
spectrum of variation of the displacementdx(t)/dt. Dashed line
with slope v1/2 serves to guide the eye.~c! the average squar
displacement of stripe positionx(t) as averaged over 1000 realiz
tions.
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on average of the order of magnitude of the order param
itself. The long range order eventually breaks up even
weak stochastic force. In general, for 1/f a power spectra
with a.1 such finite perturbations occur for timest>tcr

}q21/(a21). We tested this dependence on 1D stripes, wh
the critical time istcr}q22. For this purpose we prepare
numerically an off-resonance stripe pattern in SHE~1! for
1D without stochastic term. The off-resonance stripe w
stable ~was within the Eckhaus stability range!. Then we
switched on the stochastic term and waited until the fluct
tions of the stripe pattern grew and destroyed the stripe
tern locally. After the stripe pattern is destroyed at so
places, a resonant stripe pattern appears there and invade
whole pattern in the form of propagating switching wave
The state of the system in this way changes from a lo
potential minimum~off-resonance stripe! to the global poten-
tial minimum ~resonant stripe! as triggered by a local pertur
bation.

In Fig. 4 the numerically calculated lifetimes of the of
resonance stripe pattern are plotted, depending on the
perature of the stochastic force. Again, as predicted by a
lytic calculations the dependencetcr}q22 is obtained. This
shows that in spatially extended systems the switching t
from the local potential minimum to the deeper global min
mum does not depends exponentially on time as in ze
dimensional~compact! systems, but obeys a power law.
particular, for stripe patterns the switching time is:tswitch
}q22 in 1D, andtswitch}q24 in 2D.

Simple models for stripe patterns~stochastic Swift-
Hohenberg equation for order parameter, and stocha
Newell-Whitehead-Segel equation for the envelope
stripes! allow to calculate spatiotemporal noise power sp
tra, and to predict the following properties of the stripe p
terns in presence of noise:

~1! Anisotropic form of singularities in the spatial powe
spectra;

-

FIG. 4. Lifetime of off-resonant stripe pattern, depending on
strength of stochastic forceq, as obtained by numerical integratio
of SHE ~1! in 1D with p51. The resonant stripe pattern withk0

2

51 was excited forD51. The detuning value was then reduced
0.75, and the time was measured until the new resonant stripe
tern wins. Every point is obtained by averaging over 10 realizatio
The dashed line with slopeq22 serves to guide the eye.
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~2! stability conditions dependent on number of spa
dimensions;

~3! 1/f a temporal power spectra with the exponenta de-
pending explicitly on the number of spatial dimensions;

~4! sub-Brownian stochastic drift law;
~5! power law dependence of life-time of locally stab
ik,

e
.

06612
lstripe patterns on the strength of stochastic force~corre-
sponding to local potential minimum!.
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